Because of a lapse in government funding, the information on this
website may not be up to date, transactions submitted via the website
may not be processed, and the agency may not be able to respond to
inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more
details about its operating status, please visit
cc.nih.gov.
Updates regarding government operating status and resumption of normal
operations can be found at opm.gov.
We couldn’t survive without proteins. They’re essential molecules that provide cells with structure, aid in chemical reactions, support communication, and much more. Portion out protein numbers with us below!
These green spots are clumps of protein inside yeast cells that are deficient in both zinc and a protein that prevents clumping. Credit: Colin MacDiarmid and David Eide, University of Wisconsin at Madison and the Journal of Biological Chemistry.
10 Trillion
That’s how many proteins scientists estimate are in each human cell.
229,378
That’s how many structures researchers shared with the scientific community through the Protein Data Bank (PDB) from its establishment in 1971 to the end of 2024. The PDB is a global repository for 3D structural data of proteins, DNA, RNA, and even complexes these biological molecules form with medicines or other small molecules.
42
That’s the percent of your body weight (not counting water) that’s made up of proteins.
Cells rely on garbage and recycling systems to keep their interiors neat and tidy. If it weren't for these systems, cells could look like microscopic junkyards—and worse, they might not function properly. So constant cleaning is a crucial biological process, and if it goes wrong, accumulated trash can cause serious problems.
Proteasomes: Cellular Garbage Disposals
One of the cell's trash processors is called the proteasome. It breaks down proteins, the building blocks and mini-machines that make up many cell parts. The barrel-shaped proteasome disassembles damaged or unwanted proteins, breaking them into bits that the cell can reuse to make new proteins. In this way, the proteasome is just as much a recycling plant as it is a garbage disposal.
Numbers are everywhere in chemistry. You can’t balance equations, determine limiting reactants, or calculate percent yields without them. So, let’s dive into some of the significant figures in chemistry!
3
A lithium atom with three protons (red) and four neutrons (blue) in the nucleus and three gray electrons orbiting around them. Credit: iStock.
That's the number of different types of particles—protons, neutrons, and electrons—that make up atoms, the basic unit of all matter. Protons are positively charged, neutrons are neutral, and electrons are negatively charged. The number of protons in an atom determines what element it is, and atoms usually have an equal number of protons and electrons. Atoms can have different numbers of neutrons, though, and atoms with the same number of protons and different numbers of neutrons are called isotopes. Protons and neutrons make up the core—or nucleus—of an atom, and electrons orbit around them.
4.9 Million
That’s how many miles per hour the electron in one hydrogen atom in a molecule of water is moving. At that rate, the electron could make it from New York City to Los Angeles in about 2 seconds!
Do you find yourself frustrated while baking when trying to convert between measuring units, like cups to ounces? First of all, we can help with that one: 1 cup is equal to 8 ounces (oz), 16 tablespoons (Tbsp), 48 teaspoons (tsp), or 240 milliliters (mL).
Based on their names, you can probably guess that people began using the tools they had, like cups, teaspoons, and tablespoons, to measure ingredients in the kitchen. They eventually standardized these units of measure because not all spoons or cups were the same size. So now, instead of a recipe calling for milk that fills half a teacup or enough water to fill a coffee cup, we use the standard measuring cup, tablespoon, and teaspoon. In the research lab, scientists use scales and balances to measure solids—not cups—and a variety of tools to measure liquid, from syringes and pipettes to graduated cylinders and flasks—but never spoons!
"Science has always impacted me, but I didn't realize how much until I actually became a scientist," says Elias Picazo, Ph.D., assistant professor of chemistry at the University of Southern California in Los Angeles. We talked to Dr. Picazo about his path to becoming a scientist, some of the challenges he faced along the way, and his research inventing new ways to make chemical bonds.
Get to Know Dr. Picazo
Books or movies? Movies
Beach or mountains? Mountains
Favorite music genre? Pop
Rainy or sunny? Sunny
Salty or sweet? Sweet
Music or podcast? Podcast
Washing glassware in the lab or dishes in your kitchen? Glassware
If you like this post, check out our other "By the Numbers" posts!
Cells are the basic unit of life—and the focus of much scientific study. They’re categorized based on whether or not they have a distinct nucleus. Prokaryotic cells, like some bacteria such as blue-green algae, don’t have distinct nuclei. Instead, their nuclear material is spread throughout the cytoplasm. Eukaryotic cells—or cells with nuclei—make up humans, animals, plants, and fungi. Here are just a few of cells’ fascinating facets.
30 Trillion
That's about how many human cells adults have in their bodies. Males are on the higher side with about 36 trillion cells, while females average about 28 trillion cells.
To celebrate the 2024 National Postdoc Appreciation Week, we're revisiting some scientists we've interviewed on the blog and how their postdoctoral experiences and NIGMS-funded training shaped their careers.
Top row, left to right: Drs. Ahna Skop, Jeff Mudridge, and Nkrumah Grant. Bottom row, left to right: Drs. Mia Huang, Jesse Hall, and Caroline Palavicino-Maggio. Credit: NIGMS.
Dr. Koculi standing in her lab next to her childhood chemistry book that changed her life. Credit: Luis Miranda, UTEP Media.
“Being a scientist is thrilling, and it’s also tremendously fun,” says Eda Koculi, Ph.D., assistant professor of chemistry and biochemistry at the University of Texas at El Paso (UTEP). “In my opinion, science is the only profession that allows a person to simultaneously express their creativity, quench their intellectual curiosity, and serve society.” We spoke with Dr. Koculi about how she became a researcher, what she’s uncovering about how ribosomes are built and modified, and how she encourages students to pursue scientific careers.
Get to Know Dr. Koculi
Coffee or tea? Coffee
Favorite music genre? Classical
Salty or sweet? Salty
Early bird or night owl? Night owl
Washing glassware in the lab or dishes in your kitchen? Glassware
What was your childhood dream job? A scientist or a teacher—and I have both my dream jobs.
This adult Hawaiian bobtail squid swimming in front of a submerged hand illustrates its small size. Credit: The labs of Margaret J. McFall-Ngai, Carnegie Institution for Science/California Institute of Technology, and Edward G. Ruby, California Institute of Technology.
The Hawaiian bobtail squid (Euprymna scolopes) is only about as big as a golf ball, but what it lacks in size, it makes up for in its superpower—an invisibility cloak to be exact. Thanks to its symbiotic relationship with the bioluminescent bacteriaVibrio fischeri, it’s able to seemingly disappear from its predators when swimming at night.
These super-squid live in the shallow coastal waters in the Pacific, like those around the Hawaiian Islands. They’re nocturnal, so they hunt their prey—small shrimp and other crustaceans—at night and hide, often by burying themselves in the sand, during the day while they rest. Although Hawaiian bobtail squid live their short 3-10 month lives around one another, they generally only interact for breeding, and even then, they only reproduce once in their lifetimes and die soon after reproduction.
If you like this post, check out our other "By the Numbers" posts!
Even though scientists have been studying genetics since the mid-19th century, they continue to make new discoveries about genes and how they impact our health on a regular basis. NIGMS researchers study how genes are expressed and regulated, how gene variants with different “spellings” of their genetic code affect health, and much more. Get the drop on DNA and the gist of genes with these fast facts: