Because of a lapse in government funding, the information on this
website may not be up to date, transactions submitted via the website
may not be processed, and the agency may not be able to respond to
inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more
details about its operating status, please visit
cc.nih.gov.
Updates regarding government operating status and resumption of normal
operations can be found at opm.gov.
Kim is a biomedical researcher turned science writer who loves creating accessible science content that encourages enthusiasm for science, technology, engineering, and math in kids and adults.
“We hope that students come out of our program feeling like they’re part of a community. Many of us feel inadequate or struggle in some way during graduate school—it can be a challenging time.
While she was in graduate school, Mandy Muller, Ph.D., became intrigued with viruses that are oncogenic, meaning they can cause cancer. At the time, she was researching human papillomaviruses (HPVs), which can lead to cervical and throat cancer, among other types. Now, as an assistant professor of microbiology at the University of Massachusetts (UMass) Amherst, Dr. Muller studies Kaposi sarcoma-associated herpesvirus (KSHV), which causes the rare AIDS-associated cancer Kaposi sarcoma.
A Continental Change
Dr. Muller has come a long way, both geographically and professionally, since her childhood in France. She was the first person in her family to graduate from high school, where she excelled in science, and went on to attend École Normale Supérieure (ENS) de Lyon, a research-oriented undergraduate institution in Lyon, France. “We spent weeks at a time in laboratory-based classes, working in real labs. That’s when I realized people could do research full-time, which caught my attention,” says Dr. Muller. She double-majored in biology and geology, and soon chose to focus her career on immunology and virology.
Circadian rhythms control the timing of many daily changes in your body. Credit: iStock.
If you struggle to wake up in time for school or work or feel drowsy during a trip abroad, your circadian rhythms may be out of sync with your environment. Circadian rhythms are your internal timekeepers, and almost all organisms, from bacteria to plants and animals, have them. You can’t see them, but you can feel their effects—they control when you get sleepy, when you wake up in the morning, and when you feel hungry. Among other signals, the brain uses sunlight to keep time.
“It’s so fun to try to make meaning from a confusing experimental result and talk to other scientists who are excited by the same questions you are,” says Elizabeth Wayne, Ph.D., an assistant professor of biomedical engineering and chemical engineering at Carnegie Mellon University (CMU) in Pittsburgh, Pennsylvania. We talked to Dr. Wayne about her career trajectory, research on immune cells, and belief that scientists can change the world.
Q: How did you first become interested in science?
The power of computer code has been a longtime fascination for Tomas Helikar, Ph.D., a professor of biochemistry at the University of Nebraska-Lincoln (UNL). In college, when he learned he could use that power to help researchers better understand biology and improve human health, Dr. Helikar knew he’d found his ideal career. Since then, he’s built a successful team of scientists studying the ways we can use mathematical models in biomedical research, such as creating a digital replica of the immune system that could predict how a patient will react to infectious microorganisms and other pathogenicinsults.
A Career in Computational Biology
Dr. Helikar first became involved in computer science by learning how to build a website as a high school student. He was amazed to learn that simple lines of computer code could be converted into a functional website, and he felt empowered knowing that he had created a real product from his computer.
A career path in science is rarely clear cut and linear, which Elimelda Moige Ongeri, Ph.D., can attest adds to its excitement. She went from working in animal reproductive biology to studying proteins involved in inflammation and tissue injury. Dr. Ongeri is also currently dean of the Hairston College of Health and Human Sciences and professor of physiology at North Carolina Agricultural and Technical State University (NC A&T) in Greensboro. In this interview, she shares details of her career, including a change in research focus to human physiology; her goals for the future; and advice for students.
Q: How did you first become interested in science?
A: I was born and raised in Kenya, and, at that time, junior high students were required to select a path to pursue (e.g., the arts or the sciences) and three specific subjects to focus on. My teachers encouraged me to pursue the science path, and I eventually chose to focus on biology, chemistry, and math. Math was my favorite subject at the time, but I didn’t feel that a math degree could lead to many job opportunities, so I chose to pursue biomedical science.
The word media may make many of us think about media outlets where we get our news or social media where we keep up with friends.
But to biomedical researchers, media is a nutrient-rich liquid that fuels
cell cultures—groups of
cells grown in a lab.
“One of the biggest things I hope for in my career is that in 20 years, I still feel the same joy and enthusiasm for research and training that I feel now,” says Prabodhika Mallikaratchy, Ph.D., a professor in the department of molecular, cellular, and biomedical sciences at the City University of New York (CUNY) School of Medicine. Dr. Mallikaratchy talks with us about her career path, research on developing new immunotherapies and molecular tools using nucleic acids, and her belief in the importance of being passionate about your career.
Q: How did you first become interested in science?
A: Growing up in Sri Lanka, I was always a curious child. I remember being drawn to science and math, but there was no particular incident that sparked my interest. By the time I reached high school, though, I had become especially interested in chemistry.
Some might think that protein is only important for weightlifters. In truth, all life relies on the activity of protein molecules. A single human cell contains thousands of different proteins with diverse roles, including:
Actin proteins in a cell’s cytoskeleton. Credit: Xiaowei Zhuang, HHMI, Harvard University, and Nature Publishing Group.
Providing structure. Proteins such as actin make up the three-dimensional cytoskeleton that gives cells structure and determines their shapes.
Aiding chemical reactions. Many proteins are biological catalysts called enzymes that speed up the rate of chemical reactions by reducing the amount of energy needed for the reactions to proceed. For example, lactase is an enzyme that breaks down lactose, a sugar found in dairy products. Those with lactose intolerance don’t produce enough lactase to digest dairy.
Supporting communication. Some proteins act as chemical messengers between cells. For example, cytokines are the protein messengers of the immune system and can increase or decrease the intensity of an immune response.