Skip Over Navigation Links

NIGMS Predoctoral Training Grant Program Areas and Contacts

NIGMS accepts predoctoral training grant applications to enhance graduate (Ph.D.) research training in 12 broad areas of basic biomedical sciences. In addition, NIGMS supports the integrated medical and graduate research training through the Medical Scientist Training Program (MSTP). For general information about these institutional NRSA T32 predoctoral training programs, contact Dr. Shiva Singh at 301-594-3900.

Basic Biomedical Sciences

Integrated Medical and Graduate Training

Behavioral-Biomedical Sciences Interface: Dr. Mercedes Rubio -- 301-594-3900
Programs should provide graduate research training for students at the behavioral sciences-biomedical sciences interface. The goal of the program is to develop basic behavioral scientists with rigorous broad-based training in biology and biomedical science who are available to assume leadership roles related to the nation's biomedical research needs. Programs must provide an interdisciplinary research training experience and curriculum for predoctoral trainees that integrates both behavioral and biomedical perspectives, approaches and methodologies. Training programs must include coursework, laboratory rotations and programmatic activities that reinforce training at this interface. Significant participation by faculty and leadership from both behavioral and biomedical science departments is required, as is co-mentoring of trainees by faculty from both components.

Bioinformatics and Computational Biology: Dr. Stephen Marcus -- 301-451-6446
Programs should train students in the background theory and biological application of information sciences (including computer science, statistics and mathematics) to problems relevant to biomedical research. Of particular interest are multi-scale and large-scale problems in biology. Training should include the use of theory and computer application to the full spectrum of basic research in the biomedical sciences, including the analysis of molecular sequence and structure, molecular function, cellular function, physiology, genomics and genetics.

Biostatistics: Dr. Kenneth Gibbs -- 301-594-3901
Provides support for predoctoral training that integrates biostatistical theory and evolving methodologies with basic biomedical research including, but not limited to, bioinformatics, genetics, molecular biology, cellular processes and physiology, as well as epidemiological, clinical and behavioral studies. The goal is to ensure that a workforce of biostatisticians with a deep understanding of statistical theory and new methodologies is available to assume leadership roles related to the nation's biomedical research needs.

Biotechnology: Dr. Patrick Brown -- 301-594-3900
This training program supports the education of graduate students in the techniques and principles needed to pursue research in biotechnology. The education should be multidisciplinary, but provide a firm grounding in one or more of the fields that contribute to biotechnology, such as engineering, biophysics, biochemistry, genetics and cell biology. Faculty trainers and students participating in this program should be drawn from several departments but with a focus on engineering. The trainers should be conducting research relevant to the understanding and utilization of biological processes for biotechnological applications. These programs are expected to provide holistic training that should include, besides scientific theoretical and practical knowledge, communications skills, career development and an understanding of regulatory, commercialization and IP issues in bringing a biotechnology product to the market. The program requires a mandatory 3 month internship in pharmaceutical or biotechnological industry. A close interaction between academic and industrial partners is strongly recommended.

Cellular, Biochemical, and Molecular Sciences: Dr. Joe Gindhart -- 301-594-0828; Dr. Desirée Salazar -- 301-594-3900
Programs should be cross-disciplinary and involve in-depth study of biological problems at the level of the cellular and molecular sciences. The research training offered should encompass related disciplines, such as biochemistry, bioinformatics, biophysics, chemistry, cell biology, developmental biology, genetics, immunology, microbiology, molecular biology, neurobiology and pathology. These research opportunities should be available in the represented disciplines with faculty mentors from interacting departments and/or interdisciplinary Ph.D. programs.

Chemistry-Biology Interface (CBI): Dr. Miles Fabian -- 301-594-3827
Programs in this area should provide significant biological training to students receiving in-depth training in synthetic/mechanistic chemistry and provide significant training in synthetic/mechanistic chemistry to students being trained in depth in the biological sciences. It is expected that CBI programs will consist of faculty drawn from departments of chemistry, medicinal chemistry and/or pharmaceutical chemistry and faculty from the biological disciplines, such as biochemistry, cell biology and immunology. Students trained at the chemistry-biology interface should be well-grounded in a core discipline and sufficiently well-trained in complementary fields to allow them to work effectively in a multidisciplinary team.

Genetics: Dr. Michael Bender -- 301-594-0943
Programs should emphasize broad, multidisciplinary training in the principles and mechanisms of genetics and related sciences. Training in a variety of areas such as classical genetics, molecular genetics, population and behavioral genetics and developmental genetics should be offered. Programs may also include training and research opportunities in related disciplines such as biochemistry, cell biology and statistics. Programs are generally expected to include faculty members in disciplines other than genetics.

Molecular Biophysics: Dr. Paula Flicker -- 301-594-0828
Training in this area should be multidisciplinary and focus on the applications of physics, mathematics and chemistry to problems of biological structure, primarily at the molecular level. These programs should bring together faculty and students from departments such as chemistry, physics and engineering who have an interest in biologically related research with faculty and students in biological science departments whose orientation is the application of physical methods and concepts to biological systems.

Molecular Medicine: Dr. Alison Cole -- 301-594-3827
Training in this area is intended to combine rigorous didactic training in the basic biomedical sciences with exposure to concepts and knowledge underlying the molecular basis of disease. The goal is to train a cadre of scientists prepared to work at the interface of basic biomedical science and clinical research, an area sometimes referred to as translational research. Trainees should have dual mentors in basic and clinical science, and exposure to the concepts of medicine. Training faculty should be broadly drawn from multiple departments and disciplines and thesis research topics should reflect a broad range of interdisciplinary opportunities in the basic biomedical sciences. This training opportunity should be primarily designed for Ph.D. candidates.

Pharmacological Sciences: Dr. Sailaja Koduri -- 301-594-3900
Training in this area should incorporate a quantitative and systems approach to pharmacology. Individuals should receive training that will enable them to conduct research in the development of therapeutic agents. It should also provide training in regulatory sciences that includes the study of pharmacometrics and the principles of absorption, distribution, metabolism, excretion and toxicology (ADME-Tox). Thesis research opportunities should be available with faculty members in a variety of disciplines, such as biochemistry, physiology, molecular biology, cell biology, chemistry, medicinal chemistry and toxicology, as well as pharmacology. Students trained in this program should be able to contribute to the design and evaluation of therapeutic agents and strategies based upon the competence they have acquired through specialized training in the pharmacological sciences, both through their individualized research area and their understanding and being conversant with the overall drug discovery and development process.

Systems and Integrative Biology: Dr. Zhongzhen Nie -- 301-594-0828
Training in this area should be directed toward building the broad research competence required to investigate the integrative, regulatory and developmental processes of higher organisms and the functional components of these processes. The training program should bring together varied resources, approaches and thesis research opportunities with faculty mentors of such disciplines/departments as physiology, biomedical engineering, the behavioral sciences, biochemistry, systems biology and cell and developmental biology. Graduates of the program should be well versed in quantitative approaches to biology.

Transdisciplinary Basic Biomedical Sciences (Effective for applications submitted for the May 25, 2018 receipt date and thereafter): Dr. Shiva Singh -- 301-594-3900
In an effort to increase efficiencies, and broaden the scope and geographic distribution of NIGMS training dollars, training in this transdisciplinary area is open only to: a) institutions that currently do not have a NIGMS-funded institutional predoctoral T32 training program in any of the basic biomedical sciences disciplines listed above (with the exception of Behavioral-Biomedical Sciences Interface or Biostatistics), or b) institutions with current NIGMS-funded predoctoral T32 training programs that propose to merge two or more of their existing NIGMS-funded predoctoral training programs in to a single program. Training supported under this area may be covered by the other NIGMS-supported areas of basic biomedical sciences disciplines, or may include other emerging area(s) within the NIGMS mission.

Medical Scientist Training Program (MSTP, leading to the combined M.D.-Ph.D. degree): Dr. Stefan Maas -- 301-594-0943; Dr. Jessica Faupel-Badger -- 301-594-3900
The MSTP supports the integrated medical and graduate research training that is required for the investigation of human diseases. It assures highly selected trainees a choice of a wide range of pertinent graduate programs in the biological, chemical and physical sciences that, when combined with training in medicine, lead to the M.D.-Ph.D. degree. Programs are encouraged to provide a breadth of doctoral research training opportunities consistent with individual institutional strengths. In addition to the above disciplines, support of trainees in other disciplines such as computer sciences, social and behavioral sciences, economics, epidemiology, public health, bioengineering, biostatistics and bioethics is encouraged. Proposed MSTP programs should be flexible and adaptable in providing each trainee with the appropriate background in the sciences relevant to medicine, yet be rigorous enough to enable graduates to function independently in both basic research and clinical investigation.

This page last reviewed on October 06, 2017