NIGMS Ruth L. Kirschstein NRSA Predoctoral Institutional Research Training Grant (T32)

Jon Lorsch, Alison Gammie, Shiva Singh, John Laffan, Lisa Newman, and Lisa Moeller

National Institute of General Medical Sciences, NIH
Today’s Webinar Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 pm</td>
<td>Opening remarks by Dr. Jon Lorsch, Director, NIGMS and Dr. Alison Gammie, Director, TWD</td>
</tr>
<tr>
<td>3:10 pm</td>
<td>Overview of NIGMS Predoctoral T32 Training Program by Dr. Shiva Singh, Chief of Undergraduate & Predoctoral Training, TWD, NIGMS</td>
</tr>
<tr>
<td>3:40 pm</td>
<td>T32 Training Data Tables by Dr. John Laffan, Scientific Review Officer, OSR, NIGMS</td>
</tr>
<tr>
<td>3:55 pm</td>
<td>Grants Management Policies & Procedures by Lisa Moeller, Team Leader, Grants Management, NIGMS</td>
</tr>
<tr>
<td>4:05 pm</td>
<td>Q & A Period</td>
</tr>
<tr>
<td>4:30 pm</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>
Questions During the Webinar?

Ask on-line in the “Chat” box located on the lower left side of your screen (type in your question(s)).

We will answer them during the Q & A period.
DISCLAIMER

This webinar and accompanying slides are for informational purposes only. They serve as an overview of the T32 Predoctoral Training Programs and are not meant to be comprehensive in coverage of all required components of an application.

For any submission, applicants are responsible for following the instructions detailed in the FOA and any Related Notices included in the FOA’s Overview Information section.
Opening Remarks

Jon Lorsch
Director, National Institute of General Medical Sciences

Alison Gammie
Director, Division of Training, Workforce Development and Diversity
National Institute of General Medical Sciences
Rethinking graduate education

A

Il available evidence suggests that over 65% of new Ph.D.s in science in the United States will not have careers in academic research, yet graduate training in science has followed the same basic format for almost 300 years, heavily focused on producing academic researchers. Given that so many students will not join that community, this system is failing to meet the needs of the majority of its students. Many academic, governmental, and professional leaders and organizations have lamented this disconnection and have suggested various adjustments, but most of these have been minor changes to graduate course offerings. It is time for the scientific and education communities to take a more fundamental look at how graduate education is structured and consider, given the current environment, whether a major reconfiguration of the entire system is needed.

Some relatively new government programs and curriculum innovations are positive steps that are likely to help students grow into career readiness. For example, the Strengthening the Biomedical Research Workforce Program from the U.S. National Institutes of Health supports innovative approaches to help biomedical graduate training better reflect the range of career options that students might pursue. Such initiatives are also working on the problem. As one example, the Massachusetts Institute of Technology offers a Global Entrepreneurship Immersion to help students learn instruction-driven entrepreneurship through hands-on learning experiences with successful entrepreneurs. However, these efforts are limited in scope and primarily take the form of adding offerings to an already overcrowded curriculum. What is needed is a fundamental system analysis and reconfiguration that results in graduate training programs that are better designed to meet the diverse career needs of today’s students. One of the last major reconfigurations was in 1990, when the U.S. National Academies’ Committee on Science, Engineering, and Public Policy published a report calling for a rethinking of graduate education to reflect the evolution of careers in science and academia.

With this framework in mind, the current graduate education system does produce first-rate academic scientists and does meet the needs of faculty who depend on graduate students as research assistants. The system also works for the very best graduate students at the top research universities, whose career paths often do not point toward academia. Indeed, because the current approach has generated one of the strongest academic scientific enterprises in the world, there will be understandable reluctance to alter the course. But this is a moment where we can and should make major changes to graduate education, and thereby greatly improve the experience of our students.

It is time for our educational systems to fully embrace and support the modern graduate student, and to make large and transformative changes to the way graduate education is structured. To achieve this, we propose the following:

1. Rethinking the graduate education system: The current system is focused on producing Ph.D.s for academia. This system needs to be revised to better prepare students for a variety of careers.
2. Redefining the doctoral curriculum: The curriculum should be restructured to better reflect the diversity of career paths and provide students with the skills they need for success.
3. Enhancing support for graduate students: Programs should be put in place to support students throughout their graduate career.

Fix the PhD

No longer a guaranteed ticket to an academic career, the PhD system needs a serious rethink.

Alan I. Leshner
Chief Executive Officer, Executive, of the American
American Association for the Advancement of Science
former Executive Publisher of Science
Email: alirenner@
gmail.com
NIGMS Biomedical Graduate Training

While preserving the best elements, NIGMS would like to catalyze changes in biomedical graduate training to keep pace with the rapid evolution of biomedical research.
Pilot NIGMS-specific funding announcement PAR-17-341

- Emphasize trainee development – providing the skills needed to transition into careers in the biomedical research workforce
- Focus on rigor & transparency, responsible & safe conduct of research, as well as diversity & inclusion throughout the training experience.
- Address conflicts in the incentive structure of the research enterprise (treating trainees as workforce).
- Require mentor training and oversight of trainee/mentor matches.
- Require obtainable and measurable training objectives.
- Require the collection and dissemination of data on the success/failure of educational interventions and post career outcomes on publicly available sites.
The Objective of the Institutional Research Training Grant Program is to:

- **Parent**: develop and/or enhance research training opportunities for individuals interested in careers in biomedical, behavioral and clinical research that are relevant to the NIH mission. The training program should provide…. (a set of experiences)

- **Pilot**: to develop a diverse pool of well-trained scientists who have the following (a set of skills, described in the next slides)
Proposed *Trainee Focused Objectives: Technical/Operational Skills*

- Broad understanding across biomedical disciplines, and the skills to independently acquire the knowledge needed to advance their chosen field.
- The ability to think critically, independently and to identify important biomedical research questions and approaches that push forward the boundaries of their area of study.
Proposed *Trainee* Focused Objectives: Technical/Operational Skills

- A strong foundation in rigorous research design, experimental methods, quantitative literacy & reasoning skills, data analysis & interpretation
- Experience initiating, conducting, interpreting, and presenting rigorous and reproducible biomedical research with increasing self-direction
Proposed *Trainee* Focused Objectives: Professional Skills

- The ability to work effectively in teams with colleagues from diverse cultural and disciplinary backgrounds, and to promote an inclusive and supportive scientific research environment.
- The skills and opportunities to communicate scientific research methodology and findings to a wide variety of audiences (e.g., discipline-specific, across disciplines, and the public).
- The knowledge, professional skills and experiences required to identify and transition into productive careers in the biomedical research workforce.
Overview of NIGMS Predoctoral T32 Institutional Research Training Program

Shiva P. Singh, Ph.D.

National Institute of General Medical Sciences, NIH
Read, Review, and Ask questions

• NIGMS T32 FOA:
 https://grants.nih.gov/grants/guide/pa-files/PAR-17-341.html (Basic Biomedical Sciences areas only)

• NIGMS Predoctoral Research Training Grant Website:
 https://www.nigms.nih.gov/Training/InstPredoc/Pages/default.aspx

• Predoctoral Training Grants FAQs:

• NIGMS T32 Staff:
General Tips

• Read the FOA; **read it carefully**

• **NEW applications only:**

• Review the instructions (Forms Version E, Rev. December 29, 2017) on how to fill the application forms at:

• Develop the application in conjunction with the review criteria

• Make sure information in tables and narrative are consistent

• Strictly adhere to Page Limits (overall & individual sections)
NIGMS T32 Program Areas

- Behavioral-Biomedical Sciences Interface
- Bioinformatics and Computational Biology
- Biostatistics
- Biotechnology
- Cellular, Biochemical, and Molecular Sciences
- Chemistry-Biology Interface
- Genetics
- Molecular Biophysics
- Molecular Medicine
- Pharmacological Sciences
- Systems and Integrative Biology
- Transdisciplinary Basic Biomedical Sciences
Transdisciplinary Basic Biomedical Sciences

- Institutions currently without any NIGMS-funded predoctoral T32 training programs including MSTP (exception: Behavioral-Biomedical Sciences Interface and Biostatistics).

- Institutions currently with NIGMS-funded predoctoral T32 training programs that propose to merge two or more of their existing NIGMS-funded predoctoral training programs into a single program.

- Training area: NIGMS-supported areas of basic biomedical sciences, or other emerging area(s) within the NIGMS mission.
Application
Page Limits

<table>
<thead>
<tr>
<th>Section of Application</th>
<th>Page Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Summary/Abstract</td>
<td>30 lines of text</td>
</tr>
<tr>
<td>Recruitment plan to enhance diversity</td>
<td>3</td>
</tr>
<tr>
<td>Trainee retention plan</td>
<td>3</td>
</tr>
<tr>
<td>Program Plan</td>
<td>25</td>
</tr>
<tr>
<td>Plan for Instruction in Methods for Enhancing Reproducibility</td>
<td>3</td>
</tr>
<tr>
<td>Plan for Instruction in the Responsible Conduct of Research</td>
<td>3</td>
</tr>
<tr>
<td>Biographical Sketch</td>
<td>5</td>
</tr>
<tr>
<td>Institutional support letter</td>
<td>10</td>
</tr>
</tbody>
</table>
PHS 398 Research Training Program Plan

• Training Program Section
 o Program Plan
 o Plan for Instruction in the Responsible Conduct of Research
 o Plan for Instruction in Methods for Enhancing Reproducibility
 o Multiple PD/PI Leadership Plan (if applicable)

• Faculty, Trainees and Training Record Section
 o Faculty Biosketches
 o Letters of Support
 o Data Tables

• Appendix
Program Plan (25 page limit)

- Rationale, Mission, Objectives, and Overall Training Plan
- Career Development
- Program Oversight, Faculty Selection, and Mentor Training
- Institutional and Departmental Commitment to the Program
- Training Program Director(s)/Principal Investigator(s)
- Preceptors/Mentors (Program Faculty)
- Trainee Positions, Recruitment, Retention
- Training Outcomes
- Program Evaluation
Rationale, Mission, Objectives & Overall Training Plan

• Rationale and training record
• Training mission, objectives (specific, measurable)
• How the training activities will build skills and attain objectives
• Plans for using evidence-based approaches to training
• Explain how differences in backgrounds will be accommodated
• Enhancements to the training environment beyond the supported trainees
• For multidisciplinary programs - how does the training program integrate across the various departments.
• Distinctions/synergies with other NIH/NIGMS funded T32 programs
Career Development

• Introduce trainees to a range of careers in the biomedical research workforce

• Provide opportunities to develop needed skills and for experiential learning (internships, shadowing, informational interviews)

• Post outcomes
Program Oversight

• Oversight throughout the training process is essential
• Select faculty based on commitment to training and mentoring
• Provide mentor training
• Ensure that trainees are in research environments that promote responsible conduct as well as rigor and transparency
• Mechanism for
 - Matching mentors/mentees
 - Monitoring mentee/mentor relationships and plans for removing faculty showing poor mentorship qualities from the program
Institutional Commitment

• Rigor and responsible conduct in research is valued
• Start-up and bridging funds are available to ensure training continuity
• Provide staff support and research infrastructure
• Give protected time for training and mentoring
• Consider teaching and mentoring in tenure and promotion
• Provide a supportive and inclusive research and training environment
• Provide safe and accessible facilities
• Support trainees throughout their time in graduate school
• Support evaluation of training and mentoring activities
• Promote synergy across various programs
Program Directors/Principal Investigators

• Scientific expertise, administrative and training experiences

• Sufficient time commitment

• Record of using rigorous and transparent methods in experimental design, data collection, analysis, and reporting

• Demonstrated commitment to training the next generation of biomedical research workforce

• Multiple PDs/PIs approach is encouraged
Preceptors/Mentors (Program Faculty)

- Research funding, and scientific expertise
- Bandwidth and commitment to training
- Provide opportunities to initiate, conduct, interpret, and present rigorous and reproducible research with increasing self-direction
- Promote development of trainee skills, and career development
- Commitment to effective mentoring, and promoting inclusive and supportive environments
- Consider recruiting program faculty from underrepresented backgrounds, women, and faculty at different career stages
Trainee Positions, Recruitment, Retention

• Training Grant-eligible

• Strong justification for number of requested trainee positions in context of other NIGMS-funded training grants at the institution

• Recruit and appoint trainees from various backgrounds

• Expand upon trainee retention plan with oversight throughout the entire time in graduate training
Training Outcomes

• Use Training Table 8A (III) to provide data for five years of recent graduate outcomes, but may also describe up to 15 years of outcomes in the narrative

• Advanced scientific knowledge and/or techniques, with increasing self-direction (including peer-reviewed publications)

• Degree completion and time to degree for all trainees

• Record of recruiting students from nationally underrepresented groups and sustaining interest

• Success of graduates transitioning to careers in the biomedical research workforce
Program Evaluation

• Assessment process to determine whether the overall program is effective in meetings its goals and objectives

• Whether the scientific research climate is inclusive and supportive of trainee development

• Plans for being responsive to internal/external outcomes analyses, critiques, surveys, and evaluations

• Plan to track trainee and career outcomes and make this data publicly available
Plan for Instruction in the Responsible Conduct of Research (RCR) (3 pages)

• Describe how RCR components are well integrated into the overall curriculum at multiple stages of trainee development.

• Explain how teaching of RCR synergizes with the curriculum designed to enhance trainees' abilities to conduct rigorous and reproducible research.

• Describe how all program faculty will reiterate and augment key elements of responsible conduct when trainees are performing research in their labs.

Plan for Instruction in Methods for Enhancing Reproducibility (3 pages)

- Describe how trainees will be instructed in principles important for enhancing research reproducibility, including evaluation of foundational research underlying a project, rigorous experimental design and data interpretation, consideration of relevant biological variables, authentication of key biological and/or chemical resources, data and material sharing, record keeping, and transparency in reporting.

- Describe how instruction strategies are well integrated into the overall curriculum, that is, how they are taught at multiple stages of trainee development and in a variety of formats and contexts.

- Describe how all program faculty will reiterate and augment key elements of methods for enhancing reproducibility when trainees are performing research in their labs.
Rigor & Reproducibility Resources

- NIH Website on Rigor and Reproducibility:
 - https://www.nih.gov/research-training/rigor-reproducibility

- Clearinghouse for R25 Training Modules:

- NIGMS Administrative Supplements:
• Faculty Biosketches (with personal statement)
• Letters of Support (see the FOA for details; up to 10 pages)
• Data Tables
Other Attachments

- Advisory Committee (Optional)
- Recruitment Plan to Enhance Diversity
- Trainee Retention Plan
Advisory Committee (Optional)

- A plan for the appointment of the Advisory Committee to monitor progress of the training program
- Roles, responsibilities, and desired expertise of committee members, frequency of meetings
- How the Advisory Committee will evaluate the overall effectiveness of the program
- Do not identify or contact potential Advisory Committee members prior to receiving an award
Recruitment Plan to Enhance Diversity

- Describe outreach strategies and activities to recruit trainees from underrepresented groups (see NOT-OD-18-129).
- Include recruitment plans for URMs, and students with disabilities.
- Describe specific efforts to be undertaken by the training program, including the involvement of training program faculty.
- Centralized institutional recruitment efforts alone is not enough.
- Accommodation is not the same as outreach and recruitment of students with disabilities.
- Some useful strategies:
Trainee Retention Plan (3 pages)

- Describe efforts to sustain the scientific interests of trainees from all backgrounds.
- Describe the specific efforts to be undertaken by the training program, including the involvement of training program faculty.
- Centralized institutional retention efforts alone is not enough.
- NIH Extramural Diversity Website on Recruitment and Retention: https://extramural-diversity.nih.gov/building-participation/recruitment-retention
Important Dates

Application Due date(s): May 25, September 25, and January 25.

Due date for the first round of applications to NIGMS T32 FOA:

• May 25, 2018; by 5:00 PM local time of applicant organization

Submit early to allow adequate time to make any corrections to errors found in the application during the submission process by the due date

• Peer Review: October – November, 2018

• Advisory Council Review: January 2019

• Earliest Start Date: July 2019
Training Tables

John Laffan
Office of Scientific Review
National Institute of General Medical Sciences
Table 8A Program outcomes

- This table provides information on the effectiveness of the proposed training program.

- Summarize the data in the Program Plan Section or the Progress Report Section, as appropriate.

- **Information from previous training programs can be included in the text but NOT in theses tables**
Table 8A Program outcomes

Part I. Those Appointed to the Training Grant

<table>
<thead>
<tr>
<th>Trainee</th>
<th>Faculty Member</th>
<th>Start Date</th>
<th>Summary of Support During Training</th>
<th>Terminal Degree(s) Received and Year(s)</th>
<th>Topic of Research Project</th>
<th>Initial Position Department Institution Activity</th>
<th>Current Position Department Institution Activity</th>
<th>Subsequent Grant(s)/Role/Year Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DO NOT FILL THIS PART OUT
Table 8A Program outcomes

Part II. Those Clearly Associated with the Training Grant (DO NOT FILL OUT)

<table>
<thead>
<tr>
<th>Trainee</th>
<th>Faculty Member</th>
<th>Start Date</th>
<th>Summary of Support During Training</th>
<th>Terminal Degree(s) Received and Year(s)</th>
<th>Topic of Research Project</th>
<th>Initial Position Department Institution Activity</th>
<th>Current Position Department Institution Activity</th>
<th>Subsequent Grant(s)/Role/Year Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore, Thomas P.</td>
<td>Trimmer, Sean R.</td>
<td>09/2007</td>
<td></td>
<td>PhD 2013</td>
<td>Src Kinase and Breast Cancer</td>
<td>Postdoctoral Fellow Medicine Boston University Further Training</td>
<td>Postdoctoral Fellow Medicine Boston University Further Training</td>
<td></td>
</tr>
<tr>
<td>Rosenthal, Julia R.</td>
<td>Coates, Robert</td>
<td>09/2009</td>
<td></td>
<td>PhD 2014</td>
<td>Modulation of host cellular responses</td>
<td>Medical Student Medicine Northwestern University Further Training</td>
<td>Medical Student Medicine Northwestern University Further Training</td>
<td></td>
</tr>
</tbody>
</table>

Part III. Recent Graduates (FILL OUT)

<table>
<thead>
<tr>
<th>Trainee</th>
<th>Faculty Member</th>
<th>Start Date</th>
<th>Summary of Support During Training</th>
<th>Terminal Degree(s) Received and Year(s)</th>
<th>Topic of Research Project</th>
<th>Initial Position Department Institution Activity</th>
<th>Current Position Department Institution Activity</th>
<th>Subsequent Grant(s)/Role/Year Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore, Thomas P.</td>
<td>Trimmer, Sean R.</td>
<td>09/2007</td>
<td></td>
<td>PhD 2013</td>
<td>Src Kinase and Breast Cancer</td>
<td>Postdoctoral Fellow Medicine Boston University Further Training</td>
<td>Postdoctoral Fellow Medicine Boston University Further Training</td>
<td></td>
</tr>
<tr>
<td>Rosenthal, Julia R.</td>
<td>Coates, Robert</td>
<td>09/2009</td>
<td></td>
<td>PhD 2014</td>
<td>Modulation of host cellular responses</td>
<td>Medical Student Medicine Northwestern University Further Training</td>
<td>Medical Student Medicine Northwestern University Further Training</td>
<td></td>
</tr>
</tbody>
</table>
Table 8A Part IV. Program Statistics

- **DO NOT FILL OUT**

<table>
<thead>
<tr>
<th>Percentage of Trainees Entering Graduate School 10 Years Ago Who Completed the PhD</th>
<th>Average Time to PhD for Trainees in the Last 10 Years (not including leaves of absence)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resouces

• New T32 Data Tables & Instructions: http://grants.nih.gov/grants/funding/424/datatables.htm

• FAQs about New Training Tables: http://grants.nih.gov/grants/forms_updates_faq.htm#4802

• xTRACT User Guide, FAQs, and other Resources: https://era.nih.gov/modules_user-guides_documentation.cfm

• Videos demonstrating how xTRACT works: https://era.nih.gov/era_training/era_videos.cfm
Standing Committees Reviewers

- TWD-A & TWD-B
- 21 members each
- Strong focus on Graduate Training
- Span the range of program expertise
- Geographic distribution
- Diversity and gender distribution
- Supplemented with Ad hoc members
Reviewer Orientation

- Combined for both committees
- Required Videoconference Orientation

 All reviewers will be oriented (individually if they cannot make the videoconference)
- Additional orientation will be provided as needed
- Additional orientation to guide the discussion at the start of the review meeting.
New Application (NOT-OD-15-059)

The following content is **NOT allowed** in a new application or its associated components (e.g., the appendix, letters of support, other attachments):

- Introduction page(s) to respond to critiques from a previous review
- Mention of previous overall or criterion scores or percentile
- Mention of comments made by previous reviewers
- Responses to a prior review
- Mention of how the application has been modified since its last submission
- Marks in the application to indicate where the application has been modified since its last submission
- Progress Report
- Progress Report Publication List
New Application

• A New Application that does not conform to the rules for a New Application will not be reviewed and will not be considered for funding.

Review

• Only review criteria described in the FOA are considered.

• Areas of review

 o Overall impact

 o Scored Review Criteria

 • Training Program and Environment
 • Training Program Director(s)
 • Preceptors/Mentors (Program Faculty)
 • Trainee Positions, Recruitment and Retention
 • Training Record
Biosketches

• Program Director
 - Personal Statement

• Preceptors/Mentors
 - Requires Personal Statement – New to this FOA
 - Sufficient time to commit to training
 - Cooperate, interact, and collaborate (can include joint sponsorship of trainee research)
 - Promote development of trainee skills in approaches to experimental design, methods of data collection, data analysis & interpretation, and reporting
 - Opportunities for trainees to initiate, conduct, interpret, and present biomedical research
 - Commitment to effective mentoring, and promoting inclusive & supportive scientific/training environments
Areas of Review (continued)

- Additional Review Criteria (part the overall impact score but no separate score)

- Additional Review Considerations (no separate scores and not considered in the overall impact score)
 - Recruitment plan to enhance diversity
 - RCR
 - Training in Methods for Enhancing Reproducibility
 - Budget
Appendix (Only items mentioned in FOA)

• Required
 • RCR research syllabi

• Allowable
 • Courses, Electives and Training Activities
 • Evaluation and Assessment Instruments
 • Trainee Appointment Procedure
 • Conflict Resolution Protocols
Feedback

• Reviewers will be solicited for feedback
 ○ Improve orientation for reviewers
 ○ Clarifications for future submissions to this FOA
 ○ Suggestions to improve next FOA (MSTP and reissue)
Grants Management Policies & Procedures

Lisa Moeller,
Team Leader, Grants Management, NIGMS
Application

• Use application associated with correct NIGMS T32 FOA
 ○ Links to application in FOA

• Three options for preparing/submitting application:
 ○ Grants.gov workspace
 ○ NIH ASSIST
 ○ Your institution’s system-to-system (S2S)

• Follow Training (T) instructions in the SF424 (R&R) Application Guide
 ○ Except when instructed to do otherwise (i.e. in FOA or other Guide Notice)
Application Budget

• Use PHS 398 Training Budget Form

• Stipends
 o Use current level (published annually) see https://researchtraining.nih.gov/resources/policy-notices

• Tuition/Fees
 o request total needs; do not apply NIH formula in application budget

• Travel
 o NIGMS pays $300 per trainee
 o NIGMS cannot award $ in excess of what you request

• Training Related Expenses (TRE)
 o Lump sum - use current level (published annually) at link above
 o Includes health insurance (if same health insurance fees are charged to non-federally-supported trainees at your institution)
 o F&A – 8% MTDC (base excludes: tuition/fees, equipment, subs > $25,000)
Budget Justification

• Justify # of slots requested

• Administrative/secretarial/clerical staff
 o Must provide justification documenting how they meet all four conditions
 • Integral to a project or activity
 • Can be specifically identified with the project or activity
 • Such costs are explicitly included in the budget or have prior written approval of the federal awarding agency (would be paid under TRE cost category)
 • Costs are not also recovered as indirect costs

• Itemize tuition/fees
 o List separately if tuition varies (e.g. in-state, out-of-state, student status)
 o Do not include health insurance in this category

• Foreign travel must be justified in detail
 o Importance to training experience
 o How the opportunity differs from and complements those offered at grantee institution
 o Relationship of proposed off-site training exp. to career stage of grantee
Annual Reporting Requirements

• Trainee forms
 - x-TRAIN – appointment and termination forms

• Annual progress report (RPPR) – due November 15

• Federal Financial Report (FFR) due annually 90 days after the end of the calendar quarter in which the budget period ends
 - Example: Budget period ends June 30 which is the end of the calendar quarter; FFR due Oct. 1
 - If final year of project period due 120 days after project period ends
Why is my Notice of Award delayed

- Missing trainee docs in x-Train (appointment or termination notices)
- Missing or late annual Federal Financial Reports (FFRs)
- Missing or late annual or interim RPPRs
Rebudgetting

<table>
<thead>
<tr>
<th>INTO</th>
<th>FROM</th>
<th>Tuition</th>
<th>Stipends</th>
<th>Travel</th>
<th>TRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Stipends</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Travel</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TRE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
“Overlapping” Appointment

- An appointment period may overlap budget periods

Year 9 FY2017
7/1/2017 – 6/30/2018

Year 10 FY2018
7/1/2018 – 6/30/2019

Appointment Period
1/1/2018 – 12/31/2018

Stipend & Tuition $$ (6-months reported as unliquidated obligation on FFR)
Questions?

Jon Lorsch: jon.lorsch@nih.gov
Alison Gammie: alison.gammie@nih.gov
Shiva Singh: singhs@nigms.nih.gov
John Laffan: Laffanjo@NIGMS.nih.gov
Lisa Newman: newmanla2@NIGMS.nih.gov
Lisa Moeller: moellerl@mail.nih.gov