

P30 MSR Evaluation Working Group:

Drs. David Mathews and Michael Chapman (Co-chairs), Drs. Sarah Bowman, Vadim Cherezov, Krzysztof Fidelis, Hazel Holden, and Martina Ralle

Evaluation of NIGMS P30 Mature Synchrotron Resources (MSR) Program

P30 MSR Evaluation Working Group

- Sarah Bowman, Ph.D. Associate Professor, University at Buffalo, Buffalo, NY
- Michael Chapman, Ph.D. Professor, University of Missouri, Columbia, MO (Co-Chair)
- Vadim Cherezov, Ph.D. Professor, University of Southern California, Los Angeles, CA
- Krzysztof Fidelis, Ph.D. Professor, University of California at Davis, Davis, CA
- Hazel Holden, Ph.D. Professor, University of Wisconsin-Madison, Madison, WI
- David Mathews, M.D./Ph.D. Professor, University of Rochester, Rochester, NY (Co-Chair, Councilor)
- Martina Ralle, Ph.D. Professor, Oregon Health & Sciences University, Portland, OR

Acknowledgements

The P30 MSR evaluation working group expresses thanks to NIGMS staff for data, analysis, and helpful background information on MSR

- Richard Aragon, Ph.D.
- Dorothy Beckett, Ph.D.
- David Bochner, Ph.D.
- Thomas Cho, Ph.D.
- Anne Gershenson, Ph.D.

- Paula Flicker, Ph.D.
- Andrew Miklos, Ph.D.
- Katie Patel, MSPH
- Kamilah Rashid, Pharm.D.
- Troy Zarcone, Ph.D.

P30 MSR Evaluation Report

- Background on the P30 MSR program
- Key questions and findings
- Working group recommendations

P30 Mature Synchrotron Resources (MSR) Program Objective

 Overarching: Ensure that the biomedical research community has access to state-of-the art synchrotron beamline technologies for biological research applications

- Maintain or upgrade resources to current best practices
- Advertise resource capabilities and availability to the biomedical research community through outreach activities
- Provide user training and support in data collection, processing and analysis
- * Language based on PAR-22-166

MSR Structure

Resource Facility

• Cores

oAdministrative

User Training and OutreachTechnology Operations

Intended Resource Users

Biomedical Research Community

Synchrotron Techniques

Source: https://www.berstructuralbioportal.org/techniques-overview/

Synchrotron technique available at NIGMS-funded synchrotron resources

NIGMS MSR Sites by Location

Synchrotron	Resource
Advanced Light Source (ALS)	ALS-ENABLE
Advanced Light Source (ALS)	ALS-NCXT
Stanford Synchrotron Radiation Lightsource (SSRL)	SSRL-SMB
Advanced Photon Source (APS)	APS-GMCA
Advanced Photon Source (APS)	APS-Bio-CAT
Advanced Photon Source (APS)	APS-NE-CAT
Cornell High Energy Synchrotron Source	MacCHESS
National Synchrotron Light Source II	NSLS-II-CBMS

MSR Program Investment

- Prior to FY 2017, the synchrotron resources were funded by NIGMS through the P41 mechanism or Inter-Agency Agreements (IAA)
- After transitioning resources to the MSR program (P30) from 2017-2021, the number of resources has been stable at 8
 - Investment in the P30 MSR program has been relatively constant since FY 2020

 Around \$22 million awarded per year

Beamline and Techniques Overview

8 resources, 36 Beamlines (BL)

- Many beamlines are partially supported by NIGMS
 - Approximately 21 effective beamlines supported:
 - MX: 11 BL
 - SAXS: 3.75 BL
 - Other: 6.25 BL
- All resources offer remote access, although some techniques may require on-site access
- Time allotted for general users varies with some resources dedicating 100% access to beamlines, while others offer less user time

Key Evaluation Questions

- 1. Has the P30 MSR program been effective in meeting its objectives?
- 2. Are the current objectives of the P30 MSR program appropriate for its intended impacts?
- **3.** Can specific areas of the P30 MSR program be optimized, improved, or strengthened?
- 4. Are there additional recommendations or key findings that can inform the assessment or improvement of the P30 MSR program?

MSR Program Has Been Effective In Meeting Its Objectives

- MSR program supports an important aspect of the diverse ecosystem of structural biology technologies
- In a post-AlphaFold era (2021-), structural biology is needed to improve models and to provide difficult-to-model structures (such as RNA)
- It leverages a large investment across agencies
 - Department of Energy Basic Sciences program provides ~\$500m annually to support storage rings and additional beamlines
 - Department of Energy invested ~\$2b in synchrotron overhauls

Goal 1: Providing access to state-of-theart synchrotron beamline technologies for biological research applications

Resource Beamtime Hours

P30 MSR Number of Averaged Beamtime Hours Per Beamline By Year and Resource

- The amount of available beamtime hours is fairly consistent from year-to-year barring any serious shutdowns (i.e., COVID-19 / Safety / Upgrades)
- For all resources that reported in 2020, there were lower beamtime hours per beamline compared to other years, likely due to COVID-19 shutdowns

Resource Users: Number of Users

- Many resources saw a dip in users in 2020, likely due to COVID-19
- For most resources, the number of users have been consistent or increased However, a few have seen decreases
 - Downtime may impact users
 - Some resources address planned downtime through agreements with other resources to absorb user requests

Number of Publications

- Includes publications that cite a P30/P41 NIGMS Synchrotron Resource grant as well as publications identified in the RPPR under publications enabled by the resource
- Publications have been relatively constant, with some noteworthy observations:
 - An increase in 2020, likely due to COVID-19
 - Slight decline over the last 3 years (2021-2023), which could be due to reporting lag, COVID-19 impacts, or general decreases

Number of Released PDB Depositions

Depositions associated with most methods have leveled off, except for Electron Microscopy (EM), for which depositions continue to climb

Goals 2 and 3: Advertising resource capabilities and availability through outreach activities, providing user training, and supporting in data collection, processing, and analysis

Resource Users: Outreach is successful

NIGMS MSR Users Per NIH FY 2023 Funding (Millions) by State

2018-2023, IDeA States with Yellow Border

- The MSRs attract users globally, but the majority come from the US
- 90% of States have users accessing the MSRs
- 75% of <u>IDeA states</u> have users utilizing the MSRs
- These support that outreach is successful

Recommendations

NIGMS Should Encourage Initiatives to Improve User Experience

1. Encourage Beamlines to Standardize:

- a) Application format and process
- b) User interfaces
- c) Training (merit badge system to certify competencies)
- d) Data retention policies and long-term storage needs

2. Fostering consensus approaches through all-MSR meetings

- a) Annual; PIs + key participants
- b) Funded through supplement to host MSR?

Possible Commitment Level for Training

Inspired by Cryo-EM initiative

• Curriculum Development grants, separate from Centers:

4 proposals awarded, totaling ~ \$490,000 / year
 Corresponds to 3% of total funding to Centers

- In addition to significant training expected within the Cryo-EM National Centers
- Curriculum development grants focus on common denominator training needs

NIGMS Should Provide Reporting Templates

- 1. Future program evaluations would benefit from additional data (application numbers, success rates, wait times for each capability)
- 2. Goal is to not increase the reporting burden, but simplify the process of reporting and then analysis of data

Should the P30 MSR Mechanism Support Research?

1. Community feedback requested support for beamline technology development research

2. Working group was divided:

- a) One perspective: beamline technology development is supported by NIGMS appropriate that proposals are judged for impact relative to other research
- b) Other perspective: beamline scientists might be systematically disadvantaged
- c) NIGMS should consider whether targeted research funding could be included under the P30 mechanism

R01/R21/R35 Technology Development

- R01 / R21 technology development and R35 NIGMS applications were pulled from FY 2017-2024 from MSR organizations or key personnel on MSR P30 awards
- Applications were checked for synchrotron-based technology development
- From FY 2017-2024 there were:
 - R01 Synchrotron Technology Development
 - 14 submitted projects from 4 (50%) MSRs
 - 4 awarded projects to 2 (25%) MSRs
 - R21 Synchrotron Technology Development
 - 5 submitted projects from 2 (25%) MSRs
 - 2 awarded projects to 2 (25%) MSRs
 - R35 Synchrotron Technology Development
 - 3 awarded projects from 2 (25%) MSRs

Outreach and Support Activities Could Be Enhanced

- 1. Beamlines could offer summer internships for undergraduates and graduate students (enhance training and to encourage trainees to enter careers as beamline scientists)
- 2. Beamlines could consider enhancing available storage and computer processing capabilities (targeted to more resource-limited institutions)
 - a) Require a funding commitment from NIGMS and could be part of next RFA

NIGMS Should Consider the Level of Beamline Funding

- 1. Community feedback suggested that beamline funding might be inadequate for long-term sustainability
- 2. NIGMS should weigh the importance of maintaining beamline support and its impact against other programs

MSR Program Investment in Constant 2023 Dollars

- The P30 Mature Synchrotron Resource program has been approximately 0.75% of the NIGMS budget since 2014
- This represents a substantial investment by NIGMS

NIH