Pharmacogenomics of Asthma Treatment (PHAT)
Scott T. Weiss, MD, Brigham and Women’s Hospital
Augusto A. Litonjua, MD, Brigham and Women’s Hospital
Kelan G. Tanittisira, MD, Brigham and Women’s Hospital
Eliot Israel, MD, Brigham and Women’s Hospital
Ross Lazarus, MPH, Brigham and Women’s Hospital
Thomas J. Marian, PhD, Brigham and Women’s Hospital
Steve D. Shapiro, MD, Brigham and Women’s Hospital
Michael E. Weckler, MD, Brigham and Women’s Hospital
Jin Song Xu, PhD, Brigham and Women’s Hospital
Eugene R. Bleeker, MD, Wake Forest University
Gregory Hawkins, PhD, Wake Forest University
Deborah A. Meyers, PhD, Wake Forest University
Nan M. Laird, PhD, Harvard School of Public Health
Christoph Lange, PhD, Harvard School of Public Health
Dennis W. McGraw, MD, University of Cincinnati
Kersten M. Small, PhD, University of Cincinnati
Marco F. Ramoni, PhD, Children’s Hospital Oakland
Stephen B. Liggott, MD, University of Maryland

Using genetics to predict responders to asthma therapy, based upon understanding of asthma pathways and clinically significant variation
Funded by NHLBI

Pharmacogenomics and Risk of Cardiovascular Disease (PARC)
Ronald M. Krauss, MD, Children’s Hospital Oakland Research Institute
Deborah A. Nickerson, PhD, University of Washington
Jerome I. Rotter, MD, Cedars-Sinai Medical Center
Xiuping Guo, PhD, Cedars-Sinai Medical Center
Kent D. Taylor, PhD, Cedars-Sinai Medical Center
Dai Wang, PhD, Cedars-Sinai Medical Center
Paul T. Williams, PhD, Cedars-Sinai Medical Center
Daniel I. Chairman, MD, Brigham and Women’s Hospital
Paul M. Ridker, PhD, Brigham and Women’s Hospital
Nader R. Ghebranious, PhD, Marshfield Clinic
Catherine A. McCarthy, PhD, Marshfield Clinic
Russell A. Wilke, MD, PhD, Marshfield Clinic
Patricia J. Blanche, BS, Children’s Hospital Oakland Research Institute
Lara Mangravite, PhD, Children’s Hospital Oakland Research Institute
Mark J. Rieder, PhD, University of Washington
Joshua D. Smith, BS, University of Washington

Defining genetic contributions to differences among individuals in their responses to statin drugs and cardiovascular disease risk
Funded by NHLBI

Amish Pharmacogenomics of Antiplatelet Intervention Study (PAPI)
Alan R. Shuldiner, MD, University of Maryland
Stuart T. Haines, PharmD, University of Maryland
Braxton D. Mitchell, Jr., PhD, University of Maryland
Jeffrey R. O’Connell, PhD, University of Maryland
Toni I. Pollin, PhD, University of Maryland
Nauder Faraday, MD, Johns Hopkins University
William R. Herzig, MD, Johns Hopkins University
Wendy S. Post, MD, Johns Hopkins University

Understanding genetic determinants of responses that vary among people taking anti-platelet agents used to treat and prevent cardiovascular disease
Funded by NIGMS

PharmGKB: Catalyzing Research in Pharmacogenetics
Russ B. Altman, MD, PhD, Stanford University
Teri E. Klein, PhD, Stanford University
Tina M. Boussard, PhD, Stanford University
Michelle W. Carrillo, RN, Stanford University
Mei Gong, MS, Stanford University
Winston Gor, MS, Stanford University
Mark Kucich, MBA, Stanford University
Feng Liu, MS, Stanford University
Andrew MacBride, BA, Stanford University
Caroline F. Thorn, PhD, Stanford University
TC Truong, BS, Stanford University
Mark Woon, BSE, Stanford University
Tina Zhou, MSE, Stanford University

Designing a knowledge base to link phenotypes to genotypes in pharmacogenetics and pharmacogenomics, to be used as a tool to enable future research efforts
Funded by NIGMS, NHLBI, NHGRI, and NLM

A goal of the PGRN and PharmGKB is to aid all researchers in understanding how genes vary among individuals, and how that affects drug safety and efficacy. The network hopes to set standards for future research studies, and make scientific recommendations that will ultimately impact the clinical use of drugs.

PharmGKB
The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB) is an integrated knowledge base for pharmacogenetics linking phenotypes and genotypes. It is available for the entire scientific community to make deposits and to use the data.

- A web-based format for pharmacogenetics knowledge
- Curated, linked genotypes and phenotypes
- Genomic, molecular and cellular, and clinical datasets
- Annotated, interactive, consensus drug pathways
- Automated methods for identifying relationships
- Community-based literature submissions
- Access to the entire research community

www.pharmgkb.org
Discovering variants and identifying mechanisms involved in phase II conjugating enzymes controlling biotransformation of drugs, hormones, and neurotransmitters Funded by NIGMS and NCI